Diagnostic performance of spectroscopic and perfusion MRI for distinction of brain tumors
نویسندگان
چکیده
OBJECTIVE To assess the value of spectroscopic and perfusion MRI for glioma grading and for distinguishing glioblastomas from metastases and from CNS lymphomas. METHODS The authors examined 79 consecutive patients with first detection of a brain neoplasm on nonenhanced CT scans and no therapy prior to evaluation. Spectroscopic MRI; arterial spin-labeling MRI for measuring cerebral blood flow (CBF); first-pass dynamic, susceptibility-weighted, contrast-enhanced MRI for measuring cerebral blood volume; and T1-weighted dynamic contrast-enhanced MRI were performed. Receiver operating characteristic analysis was performed, and optimum thresholds for tumor classification and glioma grading were determined. RESULTS Perfusion MRI had a higher diagnostic performance than spectroscopic MRI. Because of a significantly higher tumor blood flow in glioblastomas compared with CNS lymphomas, a threshold value of 1.2 for CBF provided sensitivity of 97%, specificity of 80%, positive predictive value (PPV) of 94%, and negative predictive value (NPV) of 89%. Because CBF was significantly higher in peritumoral nonenhancing T2-hyperintense regions of glioblastomas compared with metastases, a threshold value of 0.5 for CBF provided sensitivity, specificity, PPV, and NPV of 100%, 71%, 94%, and 100%. Glioblastomas had the highest tumor blood flow values among all other glioma grades. For discrimination of glioblastomas from grade 3 gliomas, sensitivity was 97%, specificity was 50%, PPV was 84%, and NPV was 86% (CBF threshold value of 1.4), and for discrimination of glioblastomas from grade 2 gliomas, sensitivity was 94%, specificity was 78%, PPV was 94%, and NPV was 78% (CBF threshold value of 1.6). CONCLUSION Perfusion MRI is predictive in distinguishing glioblastomas from metastases, CNS lymphomas and other gliomas vs MRI and magnetic resonance spectroscopy.
منابع مشابه
Evaluation of Diagnostic Value of CT Scan and MRI in Brain Tumors and Comparison with Biopsy
Abstract Background Cerebral neoplasm arises from brain, spinal cord and meningeal cells. Not only malignant cerebral neoplasm also benign tumor could lead to death due to mass effect on vital structures. Access to these tumors is difficult, and MRI and CT scan could be helpful in determining anatomical location of tumors and distinction of malignant from benign. Objective For better and ea...
متن کاملAn Efficient Framework for Accurate Arterial Input Selection in DSC-MRI of Glioma Brain Tumors
Introduction: Automatic arterial input function (AIF) selection has an essential role in quantification of cerebral perfusion parameters. The purpose of this study is to develop an optimal automatic method for AIF determination in dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) of glioma brain tumors by using a new preprocessing method.Material and Methods: For this study, ...
متن کاملA Two-Dimensional Convolutional Neural Network for Brain Tumor Detection From MRI
Aims: Cancerous brain tumors are among the most dangerous diseases that lower the quality of life of people for many years. Their detection in the early stages paves the way for the proper treatment. The present study aimed to present a two-dimensional Convolutional Neural Network (CNN) for detecting brain tumors under Magnetic Resonance Imaging (MRI) using the deep learning method. Methods & ...
متن کاملDetection of Glioblastoma Multiforme Tumor in Magnetic Resonance Spectroscopy Based on Support Vector Machine
Introduction: The brain tumor is an abnormal growth of tissue in the brain, which is one of the most important challenges in neurology. Brain tumors have different types. Some brain tumors are benign and some brain tumors are cancerous and malignant. Glioblastoma Multiforme (GBM) is the most common and deadliest malignant brain tumor in adults. The average survival rate for peo...
متن کاملPerfusion Magnetic Resonance Imaging to Assess Brain Tumor Responses to New Therapies.
BACKGROUND: Although magnetic resonance imaging (MRI) is effective in detecting the location of intracranial tumors, new imaging techniques have been studied that may enhance the specificity for the prediction of histologic grade of tumor and for the distinction between recurrence and tumor necrosis associated with cancer therapy. METHODS: The authors review their experience and that of others ...
متن کامل